Package: rjd3filters (via r-universe)

September 10, 2024

Type Package

Title Trend-Cycle Extraction with Linear Filters based on JDemetra+ v3.x

Version 2.1.1

Description This package provides functions to build and apply symmetric and asymmetric moving averages (= linear filters) for trend-cycle extraction. In particular, it implements several modern approaches for real-time estimates from the viewpoint of revisions and time delay in detecting turning points. It includes the local polynomial approach of Proietti and Luati (2008), the Reproducing Kernel Hilbert Space (RKHS) of Dagum and Bianconcini (2008) and the Fidelity-Smoothness-Timeliness approach of Grun-Rehomme, Guggemos, and Ladiray (2018). It is based on Java libraries developped in 'JDemetra+' (<<https://github.com/jdemetra>>), time series analysis software.

Depends $R (= 4.1.0)$

Imports rJava (>= 1.0-6), methods, MASS, graphics, stats, rjd3toolkit $(>= 3.2.2)$

Remotes github::rjdverse/rjd3toolkit@*release

SystemRequirements Java (>= 17)

License EUPL

LazyData TRUE

URL <https://github.com/rjdverse/rjd3filters>,

<https://rjdverse.github.io/rjd3filters/>

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.1

Roxygen list(markdown = TRUE)

Encoding UTF-8

Repository https://rjdverse.r-universe.dev

RemoteUrl https://github.com/rjdverse/rjd3filters RemoteRef v2.1.1 RemoteSha bcce59ddc574e3ef5884810f8b79c991d57c77c2

Contents

confint_filter *Confidence intervals*

Description

Confidence intervals

```
confint_fitter(x, coef, coef_var = coef, level = 0.95, ...)
```
confint_filter 3

Arguments

Details

Let $(\theta_i)_{-p\leq i\leq q}$ be a moving average of length $p+q+1$ used to filter a time series $(y_i)_{1\leq i\leq n}$. Let denote $\hat{\mu}_t$ the filtered series computed at time t as:

$$
\hat{\mu}_t = \sum_{i=-p}^q \theta_i y_{t+i}.
$$

If $\hat{\mu}_t$ is unbiased, a approximate confidence for the true mean is:

$$
\left[\hat{\mu}_t - z_{1-\alpha/2}\hat{\sigma}\sqrt{\sum_{i=-p}^q\theta_i^2};\hat{\mu}_t + z_{1-\alpha/2}\hat{\sigma}\sqrt{\sum_{i=-p}^q\theta_i^2}\right],
$$

where $z_{1-\alpha/2}$ is the quantile $1-\alpha/2$ of the standard normal distribution.

The estimate of the variance $\hat{\sigma}$ is obtained using [var_estimator\(\)](#page-30-1) with the parameter coef_var. The assumption that $\hat{\mu}_t$ is unbiased is rarely exactly true, so variance estimates and confidence intervals are usually computed at small bandwidths where bias is small.

When coef (or coef_var) is a finite filter, the last points of the confidence interval are computed using the corresponding asymmetric filters

References

Loader, Clive. 1999. Local regression and likelihood. New York: Springer-Verlag.

Examples

```
x <- retailsa$DrinkingPlaces
coef <- lp_filter(6)
confint <- confint_filter(x, coef)
plot(confint, plot.type = "single",
     col = c("red", "black", "black"),
     lty = c(1, 2, 2)
```
deprecated-rjd3filters

Deprecated function

Description

Deprecated function

Usage

cross_validation(x, coef, ...)

Arguments

Description

Direct Filter Approach

```
dfa_filter(
 horizon = 6,
  degree = 0,
  density = c("uniform", "rw"),
  targetfilter = lp_filter(horizon = horizon)[, 1],
 passband = 2 * pi/12,
  accuracy. weight = 1/3,
  smoothness.weight = 1/3,
  timeliness.weight = 1/3
\mathcal{L}
```
diagnostics-fit 5

Arguments

Details

Moving average computed by a minimisation of a weighted mean of three criteria under polynomials constraints. The criteria come from the decomposition of the mean squared error between th trend-cycle

Let $\theta = (\theta_{-p}, \dots, \theta_f)'$ be a moving average where p and f are two integers defined by the parameter lags and leads. The three criteria are:

Examples

 $dfa_fitter(horizon = 6, degree = 0)$ $dfa_fitter(horizon = 6, degree = 2)$

diagnostics-fit *Diagnostics and goodness of fit of filtered series*

Description

Set of functions to compute diagnostics and goodness of fit of filtered series: cross validation (cv()) and cross validate estimate (cve()), leave-one-out cross validation estimate (loocve), CP statistic (cp()) and Rice's T statistics (rt()).

```
cve(x, coef, ...)
cv(x, coef, ...)loocve(x, coef, ...)rt(x, coef, ...)cp(x, coef, var, ...)
```


Details

Let $(\theta_i)_{-p\leq i\leq q}$ be a moving average of length $p+q+1$ used to filter a time series $(y_i)_{1\leq i\leq n}$. Let denote $\hat{\mu}_t$ the filtered series computed at time t as:

$$
\hat{\mu}_t = \sum_{i=-p}^q \theta_i y_{t+i}.
$$

The cross validation estimate (cve()) is defined as the time series $Y_t - \hat{\mu}_{-t}$ where $\hat{\mu}_{-t}$ is the leaveone-out cross validation estimate (loocve()) defined as the filtered series computed deleting the observation t and remaining all the other points. The cross validation statistics $(cv()$ is defined as:

$$
CV = \frac{1}{n - (p + q)} \sum_{t=p+1}^{n-q} (y_t - \hat{\mu}_{-t})^2.
$$

In the case of filtering with a moving average, we can show that:

$$
\hat{\mu}_{-t} = \frac{\hat{\mu}_t - \theta_0 y_t}{1 - \theta_0}
$$

and

$$
CV = \frac{1}{n - (p + q)} \sum_{t=p+1}^{n-q} \left(\frac{y_t - \hat{\mu}_t}{1 - \theta_0} \right)^2.
$$

In the case of filtering with a moving average, the CP estimate of risk (introduced by Mallows (1973) ; cp()) can be defined as:

$$
CP = \frac{1}{\sigma^2} \sum_{t=p+1}^{n-q} (y_t - \hat{\mu}_t)^2 - (n - (p+q))(1 - 2\theta_0).
$$

The CP method requires an estimate of σ^2 (var parameter). The usual use of CP is to compare several different fits (for example different bandwidths): one should use the same estimate of $\hat{\sigma}^2$ for all fits (using for example [var_estimator\(\)](#page-30-1)). The recommendation of Cleveland and Devlin (1988) is to compute $\hat{\sigma}^2$ from a fit at the smallest bandwidth under consideration, at which one should be willing to assume that bias is negligible.

The Rice's T statistic $(rt()$ is defined as:

$$
\frac{1}{n-(p+q)}\sum_{t=p+1}^{n-q} \frac{(y_t - \hat{\mu}_t)^2}{1-2\theta_0}
$$

References

Loader, Clive. 1999. Local regression and likelihood. New York: Springer-Verlag.

Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661– 675.

Cleveland, W. S. and S. J. Devlin (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596–610.

diagnostic_matrix *Compute quality criteria for asymmetric filters*

Description

Function du compute a diagnostic matrix of quality criteria for asymmetric filters

Usage

```
diagnostic_matrix(x, lags, passband = pi/6, sweights, ...)
```
Arguments

Details

For a moving average of coefficients $\theta = (\theta_i)_{-p \leq i \leq q}$ diagnostic_matrix returns a list with the following ten criteria:

• b_c Constant bias (if $b_c = 0$, θ preserve constant trends)

$$
\sum_{i=-p}^{q} \theta_i - 1
$$

• b_1 Linear bias (if $b_c = b_l = 0$, θ preserve constant trends)

$$
\sum_{i=-p}^{q} i\theta_i
$$

• b_q Quadratic bias (if $b_c = b_l = b_q = 0$, θ preserve quadratic trends)

$$
\sum_{i=-p}^{q} i^2 \theta_i
$$

- • F_g Fidelity criterium of Grun-Rehomme et al (2018)
- S_g Smoothness criterium of Grun-Rehomme et al (2018)
- T_g Timeliness criterium of Grun-Rehomme et al (2018)
- A_w Accuracy criterium of Wildi and McElroy (2019)
- S_w Smoothness criterium of Wildi and McElroy (2019)
- T_w Timeliness criterium of Wildi and McElroy (2019)
- R_w Residual criterium of Wildi and McElroy (2019)

References

Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray (2018). "Asymmetric Moving Averages Minimizing Phase Shift". In: Handbook on Seasonal Adjustment.

Wildi, Marc and McElroy, Tucker (2019). "The trilemma between accuracy, timeliness and smoothness in real-time signal extraction". In: International Journal of Forecasting 35.3, pp. 1072–1084.

filter *Linear Filtering on a Time Series*

Description

Applies linear filtering to a univariate time series or to each series separately of a multivariate time series using either a moving average (symmetric or asymmetric) or a combination of symmetric moving average at the center and asymmetric moving averages at the bounds.

Usage

filter(x, coefs, remove_missing = TRUE)

Arguments

Details

The functions filter extends [filter](#page-7-1) allowing to apply every kind of moving averages (symmetric and asymmetric filters) or to apply aset multiple moving averages to deal with the boundaries.

Let x_t be the input time series to filter.

• If coef is an object moving _average(), of length q, the result y is equal at time t to:

 $y[t] = x[t - lags] * coef[1] + x[t - lags + 1] * coef[1] + ... + x[t - lags + q] * coef[q]$

. It extends the function [filter](#page-7-1) that would add NA at the end of the time series.

• If coef is a matrix, list or [finite_filters\(\)](#page-11-1) object, at the center, the symmetric moving average is used (first column/element of coefs). At the boundaries, the last moving average of coefs is used to compute the filtered time series $y[n]$ (no future point known), the second to last to compute the filtered time series $y[n-1]$ (one future point known)...

Examples

```
x <- retailsa$DrinkingPlaces
```

```
lags <-6leads <-2fst_coef <- fst_filter(lags = lags, leads = leads, smoothness.weight = 0.3, timeliness.weight = 0.3)
lpp_coef <- lp_filter(horizon = lags, kernel = "Henderson", endpoints = "LC")
fst_ma <- filter(x, fst_coef)
lpp_ma <- filter(x, lpp_coef[,"q=2"])
plot(ts.union(x, fst_ma, lpp_ma), plot.type = "single", col = c("black","red","blue"))
trend <- filter(x, lpp_coef)
# This is equivalent to:
trend \leq localpolynomials(x, horizon = 6)
```
filters_operations *Operations on Filters*

Description

Manipulation of [moving_average\(\)](#page-21-1) or [finite_filters\(\)](#page-11-1) objects

```
## S3 method for class 'moving_average'
sum(..., na.rm = FALSE)## S4 method for signature 'moving_average,numeric'
x[i]
## S4 method for signature 'moving_average,logical'
x[i]
## S4 replacement method for signature 'moving_average,ANY,missing,numeric'
x[i] <- value
```

```
## S3 method for class 'moving_average'
cbind(..., zero-as_na = FALSE)## S3 method for class 'moving_average'
rbind(...)
## S4 method for signature 'moving_average,moving_average'
e1 + e2## S4 method for signature 'moving_average,numeric'
e1 + e2
## S4 method for signature 'numeric,moving_average'
e1 + e2
## S4 method for signature 'moving_average,missing'
e1 + e2
## S4 method for signature 'moving_average,missing'
e1 - e2## S4 method for signature 'moving_average,moving_average'
e1 - e2
## S4 method for signature 'moving_average,numeric'
e1 - e2
## S4 method for signature 'numeric,moving_average'
e1 - e2
## S4 method for signature 'moving_average,moving_average'
e1 * e2
## S4 method for signature 'moving_average,numeric'
e1 * e2
## S4 method for signature 'numeric,moving_average'
e1 * e2
## S4 method for signature 'ANY,moving_average'
e1 * e2
## S4 method for signature 'moving_average,ANY'
e1 * e2
## S4 method for signature 'moving_average,numeric'
e1 / e2
```

```
## S4 method for signature 'moving_average,numeric'
e1 ^ e2
## S4 method for signature 'finite_filters,moving_average'
e1 * e2
## S4 method for signature 'moving_average, finite_filters'
e1 * e2
## S4 method for signature 'finite_filters,numeric'
e1 * e2
## S4 method for signature 'ANY,finite_filters'
e1 * e2
## S4 method for signature 'finite_filters,ANY'
e1 * e2
## S4 method for signature 'numeric, finite_filters'
e1 + e2## S4 method for signature 'finite_filters,moving_average'
e1 + e2
## S4 method for signature 'moving_average,finite_filters'
e1 + e2
## S4 method for signature 'finite_filters,missing'
e1 + e2
## S4 method for signature 'finite_filters,missing'
e1 - e2
## S4 method for signature 'finite_filters,moving_average'
e1 - e2
## S4 method for signature 'moving_average, finite_filters'
e1 - e2
## S4 method for signature 'finite_filters,numeric'
e1 - e2
## S4 method for signature 'numeric, finite_filters'
e1 - e2
## S4 method for signature 'finite_filters,numeric'
e1 / e2
```

```
## S4 method for signature 'finite_filters,numeric'
e1 ^ e2
## S4 method for signature 'finite_filters,finite_filters'
e1 * e2
## S4 method for signature 'finite_filters, finite_filters'
e1 + e2
## S4 method for signature 'finite_filters,finite_filters'
e1 - e2
## S4 method for signature 'finite_filters,missing'
x[i, j, ..., drop = TRUE]## S4 method for signature 'finite_filters,ANY'
x[i, j, ..., drop = TRUE]
```


Description

Manipulating Finite Filters

```
finite_filters(
 sfilter,
 rfilters = NULL,
 lfilters = NULL,
  first_to_last = FALSE
\mathcal{L}is.finite_filters(x)
## S4 method for signature 'finite_filters'
show(object)
```


Examples

```
ff_lp <- lp_filter()
ff_simple_ma <- finite_filters(moving_average(c(1, 1, 1), lags = -1)/3,
               rfilters = list(moving_average(c(1, 1), lags = -1)/2))
ff_lp
ff_simple_ma
ff_lp * ff_simple_ma
```
fst *FST criteria*

Description

Compute the Fidelity, Smoothness and Timeliness (FST) criteria

Usage

```
fst(weights, lags, passband = pi/6, ...)
```
Arguments

Value

The values of the 3 criteria, the gain and phase of the associated filter.

References

Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray (2018). "Asymmetric Moving Averages Minimizing Phase Shift". In: Handbook on Seasonal Adjustment, [https://ec.europa.](https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001) [eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001](https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001).

Examples

```
filter <- lp_filter(horizon = 6, kernel = "Henderson", endpoints = "LC")
fst(filter[, "q=0"])
# To compute the statistics on all filters:
fst(filter)
```
fst_filter *Estimation of a filter using the Fidelity-Smoothness-Timeliness criteria*

Description

Estimation of a filter using the Fidelity-Smoothness-Timeliness criteria

Usage

```
fst_filter(
  lags = 6,leads = 0,
 pdegree = 2,
  smoothness.weight = 1,
  smoothness.degree = 3,
  timeliness.weight = 0,
  timeliness.passband = pi/6,
  timeliness.antiphase = TRUE
\mathcal{L}
```
Arguments

Details

Moving average computed by a minimisation of a weighted mean of three criteria under polynomials constraints. Let $\theta = (\theta_{-p}, \dots, \theta_f)'$ be a moving average where p and f are two integers defined by the parameter lags and leads. The three criteria are:

• *Fidelity*, F_g : it's the variance reduction ratio.

$$
F_g(\boldsymbol{\theta}) = \sum_{k=-p}^{+f} \theta_k^2
$$

• *Smoothness*, S_q : it measures the flexibility of the coefficient curve of a filter and the smoothness of the trend. 2

$$
S_g(\boldsymbol{\theta}) = \sum_j (\nabla^q \theta_j)
$$

The integer q is defined by parameter smoothness.degree. By default, the Henderson criteria is used (smoothness.degree = 3).

• *Timeliness*, T_q :

$$
T_g(\boldsymbol{\theta}) = \int_0^{\omega_2} f(\rho_{\boldsymbol{\theta}}(\omega), \varphi_{\boldsymbol{\theta}}(\omega)) d\omega
$$

with ρ_{θ} and φ_{θ} the gain and phase shift functions of θ , and f a penalty function defined as $f: (\rho, \varphi) \mapsto \rho^2 \sin(\varphi)^2$ to have an analytically solvable criterium. ω_2 is defined by the parameter timeliness.passband and is it by default equal to $2\pi/12$: for monthly time series, we focus on the timeliness associated to cycles of 12 months or more.

The moving average is then computed solving the problem:

$$
\begin{cases}\n\min_{\theta} & J(\theta) = (1 - \beta - \gamma)F_g(\theta) + \beta S_g(\theta) + \gamma T_g(\theta) \\
s.t. & C\theta = a\n\end{cases}
$$

Where $C\theta = a$ represents linear constraints to have a moving average that preserve polynomials of degree q (pdegree):

$$
C = \begin{pmatrix} 1 & \cdots & 1 \\ -h & \cdots & h \\ \vdots & \cdots & \vdots \\ (-h)^d & \cdots & h^d \end{pmatrix}, \quad a = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}
$$

References

Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray (2018). "Asymmetric Moving Averages Minimizing Phase Shift". In: Handbook on Seasonal Adjustment, [https://ec.europa.](https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001) [eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001](https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-18-001).

Examples

filter \le fst_filter(lags = 6, leads = 0) filter

Description

Function to get the coefficient associated to a kernel. Those coefficients are then used to compute the different filters.

Usage

```
get_kernel(
 kernel = c("Henderson", "Uniform", "Triangular", "Epanechnikov", "Parabolic",
    "BiWeight", "TriWeight", "Tricube", "Trapezoidal", "Gaussian"),
 horizon,
 sd\_gauss = 0.25)
```
Arguments

Value

tskernel object (see [kernel\)](#page-0-0).

Examples

```
get_kernel("Henderson", horizon = 3)
```
get_moving_average *Get Moving Averages from ARIMA model*

Description

Get Moving Averages from ARIMA model

Usage

get_moving_average(x, ...)

Arguments

get_properties_function 17

Examples

```
fit <- stats::arima(log10(AirPassengers), c(0, 1, 1),
seasonal = list(order = c(0, 1, 1), period = 12))
get_moving_average(fit)
```
get_properties_function

Get properties of filters

Description

Get properties of filters

Usage

```
get_properties_function(
  x,
 component = c("Symmetric Gain", "Symmetric Phase", "Symmetric transfer",
    "Asymmetric Gain", "Asymmetric Phase", "Asymmetric transfer"),
  ...
\mathcal{L}
```
Arguments

Examples

```
filter <- lp_filter(3, kernel = "Henderson")
sgain <- get_properties_function(filter, "Symmetric Gain")
plot(sgain, xlim= c(0, pi/12))
```
implicit_forecast *Retrieve implicit forecasts corresponding to the asymmetric filters*

Description

Function to retrieve the implicit forecasts corresponding to the asymmetric filters

Usage

implicit_forecast(x, coefs)

Details

Let h be the bandwidth of the symmetric filter, v_{-h}, \ldots, v_h the coefficients of the symmetric filter and w_{-h}^q, \ldots, w_h^q the coefficients of the asymmetric filter used to estimate the trend when q future values are known (with the convention $w_{q+1}^q = \ldots = w_h^q = 0$). Let denote y_{-h}, \ldots, y_0 the las h available values of the input times series. Let also note y_{-h}, \ldots, y_0 the observed series studied and y_1^*, \ldots, y_h^* the implicit forecast induced by w^0, \ldots, w^{h-1} . This means that:

$$
\forall q, \quad \sum_{i=-h}^{0} v_i y_i + \sum_{i=1}^{h} v_i y_i^* = \sum_{i=-h}^{0} w_i^q y_i + \sum_{i=1}^{h} w_i^q y_i^*
$$

which is equivalent to

$$
\forall q, \sum_{i=1}^{h} (v_i - w_i^q) y_i^* = \sum_{i=-h}^{0} (w_i^q - v_i) y_i.
$$

Note that this is solved numerically: the solution isn't exact.

Examples

```
x <- retailsa$AllOtherGenMerchandiseStores
ql \langle -1p_{f}ilter(horizon = 6, kernel = "Henderson", endpoints = "QL")
lc \leftarrow lp_fitter(horizon = 6, kernal = "Henderson", endpoints = "LC")f_ql <- implicit_forecast(x, ql)
f\_lc \leftarrow implicit\_forecast(x, lc)plot(window(x, start = 2007)),xlim = c(2007,2012))
lines(ts(c(tail(x,1), f_ql), frequency = frequency(x), start = end(x)),
      col = "red", lty = 2)lines(ts(ctail(x,1), f_cl), frequency = frequency(x), start = end(x)),col = "blue", lty = 2)
```
impute_last_obs *Impute Incomplete Finite Filters*

Description

Impute Incomplete Finite Filters

```
impute\_last\_obs(x, n, nperiod = 1, backward = TRUE, forward = TRUE)
```


Details

When combining finite filters and a moving average, the first and/or the last points cannot be computed.

For example, using the M2X12 moving average, that is to say the symmetric moving average with coefficients

$$
\theta = \frac{1}{24}B^6 + \frac{1}{12}B^5 + \dots + \frac{1}{12}B^{-5} + \frac{1}{24}B^{-6},
$$

the first and last 6 points cannot be computed.

impute_last_obs() allows to impute the first/last points using the nperiod previous filtered data. With nperiod $= 1$, the last filtered data is used for the imputation, with nperiod $= 12$ and monthly data, the last year filtered data is used for the imputation, etc.

Examples

```
y <- window(retailsa$AllOtherGenMerchandiseStores, start = 2008)
M3 <- moving_average(rep(1/3, 3), lags = -1)
M3X3 < - M3 * M3M2X12 <- (simple_ma(12, -6) + simple_ma(12, -5)) / 2
composite_ma <- M3X3 * M2X12
# The last 6 points cannot be computed
composite_ma
composite_ma * y
# they can be computed using the last filtered data
# e.g. to impute the first 3 missing months with last period:
impute\_last\_obs(composite\_ma, n = 3, nperiod = 1) * y# or using the filtered data of the same month in previous year
impute\_last\_obs(composite\_ma, n = 6, nperiod = 12) * y
```
localpolynomials *Apply Local Polynomials Filters*

Description

Apply Local Polynomials Filters

Usage

```
localpolynomials(
  x,
 horizon = 6,
 degree = 3,
 kernel = c("Henderson", "Uniform", "Biweight", "Trapezoidal", "Triweight", "Tricube",
    "Gaussian", "Triangular", "Parabolic"),
  endpoints = c("LC", "QL", "CQ", "CC", "DAF"),ic = 4.5,
  tweight = 0,
 passband = pi/12)
```
Arguments

Value

the target signal

References

Proietti, Tommaso and Alessandra Luati (2008). "Real time estimation in local polynomial regression, with application to trend-cycle analysis".

See Also

[lp_filter\(\)](#page-20-1).

Examples

```
x <- retailsa$AllOtherGenMerchandiseStores
trend <- localpolynomials(x, horizon = 6)
plot(x)
lines(trend, col = "red")
```


Description

Local Polynomials Filters

Usage

```
lp_filter(
 horizon = 6,
  degree = 3,
 kernel = c("Henderson", "Uniform", "Biweight", "Trapezoidal", "Triweight", "Tricube",
    "Gaussian", "Triangular", "Parabolic"),
  endpoints = c("LC", "QL", "CQ", "CC", "DAF", "CN"),
  ic = 4.5,tweight = 0,
 passband = pi/12\mathcal{L}
```
Arguments

Details

- "LC": Linear-Constant filter
- "QL": Quadratic-Linear filter
- "CQ": Cubic-Quadratic filter
- "CC": Constant-Constant filter
- "DAF": Direct Asymmetric filter
- "CN": Cut and Normalized Filter

Value

a [finite_filters\(\)](#page-11-1) object.

References

Proietti, Tommaso and Alessandra Luati (2008). "Real time estimation in local polynomial regression, with application to trend-cycle analysis".

See Also

[localpolynomials\(\)](#page-18-1).

Examples

```
henderson_f <- lp_filter(horizon = 6, kernel = "Henderson")
plot_coef(henderson_f)
```
moving_average *Manipulation of moving averages*

Description

Manipulation of moving averages

```
moving_average(
 x,
  lags = -length(x),
  trailing_zero = FALSE,
  leading_zero = FALSE
)
is.moving_average(x)
is_symmetric(x)
upper_bound(x)
lower_bound(x)
mirror(x)
## S3 method for class 'moving_average'
rev(x)
## S3 method for class 'moving_average'
length(x)
to_seasonal(x, s)
```
moving_average 23

S4 method for signature 'moving_average' show(object)

Arguments

Details

A moving average is defined by a set of coefficient $\theta = (\theta_{-p}, \dots, \theta_f)'$ such all time series X_t are transformed as: \mathcal{L}

$$
M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k} = \left(\sum_{k=-p}^{+f} \theta_k B^{-k}\right) X_t
$$

The integer p is defined by the parameter lags.

The function to_seasonal() transforms the moving average θ to:

$$
M_{\theta'}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+ks} = \left(\sum_{k=-p}^{+f} \theta_k B^{-ks}\right) X_t
$$

Examples

```
y <- retailsa$AllOtherGenMerchandiseStores
e1 \le moving_average(rep(1,12), lags = -6)
e1 <- e1/sum(e1)
e2 \le - moving_average(rep(1/12, 12), lags = -5)
M2X12 \le - (e1 + e2)/2coef(M2X12)
M3 \le moving_average(rep(1/3, 3), lags = -1)M3X3 < - M3 * M3# M3X3 moving average applied to each month
M3X3
M3X3_seasonal <- to_seasonal(M3X3, 12)
# M3X3_seasonal moving average applied to the global series
M3X3_seasonal
def.par <- par(no.readonly = TRUE)
par(mai = c(0.5, 0.8, 0.3, 0))
```

```
layout(matrix(c(1,2), nrow = 1))
plot_gain(M3X3, main = "M3X3 applied to each month")
plot_gain(M3X3_seasonal, main = "M3X3 applied to the global series")
par(def.par)
```
To apply the moving average

```
t \le y \times M2X12# Or use the filter() function:
t <- filter(y, M2X12)
si \leftarrow y - ts <- si * M3X3_seasonal
# or equivalently:
s_mm <- M3X3_seasonal * (1 - M2X12)
s \leq -y \times s_{mm}plot(s)
```


Description

Accuracy/smoothness/timeliness criteria through spectral decomposition

Usage

```
mse(aweights, sweights, density = c("uniform", "rw"), passband = pi/6, ...)
```
Arguments

Value

The criteria

References

Wildi, Marc and McElroy, Tucker (2019). "The trilemma between accuracy, timeliness and smoothness in real-time signal extraction". In: International Journal of Forecasting 35.3, pp. 1072–1084.

Examples

```
filter <- lp_filter(horizon = 6, kernel = "Henderson", endpoints = "LC")
sweights <- filter[, "q=6"]
aweights <- filter[, "q=0"]
mse(aweights, sweights)
# Or to compute directly the criteria on all asymmetric filters:
mse(filter)
```


plot_filters *Plots filters properties*

Description

Functions to plot the coefficients, the gain and the phase functions.

```
plot\_coeff(x, nxlab = 7, add = FALSE, ...)## Default S3 method:
plot_coef(
 x,
  nxlab = 7,
  add = FALSE,zero_as_na = TRUE,
  q = 0,
  legend = FALSE,
  legend.pos = "topright",
  ...
)
## S3 method for class 'moving_average'
plot\_coeff(x, nxlab = 7, add = FALSE, ...)## S3 method for class 'finite_filters'
plot_coef(
  x,
  nxlab = 7,
  add = FALSE,zero_as_na = TRUE,
 q = 0,
  legend = length(q) > 1,
  legend.pos = "topright",
  ...
\mathcal{L}plot\_gain(x, nxlab = 7, add = FALSE, xlim = c(0, pi), ...)## S3 method for class 'moving_average'
plot\_gain(x, nxlab = 7, add = FALSE, xlim = c(0, pi), ...)## S3 method for class 'finite_filters'
plot_gain(
  x,
  nxlab = 7,
```

```
add = FALSE,xlim = c(0, pi),q = 0,
 legend = length(q) > 1,
 legend.pos = "topright",
 n = 101,...
\mathcal{L}plot_phase(x, nxlab = 7, add = FALSE, xlim = c(\emptyset, pi), normalized = FALSE, ...)
## S3 method for class 'moving_average'
plot_phase(x, nxlab = 7, add = FALSE, xlim = c(0, pi), normalized = FALSE, ...)
## S3 method for class 'finite_filters'
plot_phase(
 x,
 nxlab = 7,
 add = FALSE,xlim = c(0, pi),
 normalized = FALSE,
 q = 0,
  legend = length(q) > 1,
  legend.pos = "topright",
 n = 101,...
\mathcal{L}
```


Examples

filter <- lp_filter(6, endpoints = "DAF", kernel = "Henderson")

retailsa 27

```
plot\_coef(filter, q = c(0,3), legend = TRUE)plot_gain(filter, q = c(0,3), legend = TRUE)
plot_phase(filter, q = c(0,3), legend = TRUE)
```
retailsa *Seasonally Adjusted Retail Sales*

Description

A dataset containing monthly seasonally adjusted retailed sales

Usage

retailsa

Format

A list of ts objects from january 1992 to december 2010.

Description

Estimation of a filter using Reproducing Kernel Hilbert Space (RKHS)

```
rkhs_filter(
 horizon = 6,
  degree = 2,
 kernel = c("BiWeight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
    "TriWeight"),
 asymmetricCriterion = c("Timeliness", "FrequencyResponse", "Accuracy", "Smoothness",
    "Undefined"),
  density = c("uniform", "rw"),
 passband = 2 * pi/12,
 optimalbw = TRUE,
 optimal.minBandwidth = horizon,
  optimal.maxBandwidth = 3 * horizon,
 bandwidth = horizon + 1)
```


Value

a [finite_filters\(\)](#page-11-1) object.

References

Dagum, Estela Bee and Silvia Bianconcini (2008). "The Henderson Smoother in Reproducing Kernel Hilbert Space". In: Journal of Business & Economic Statistics 26, pp. 536–545. URL: <https://ideas.repec.org/a/bes/jnlbes/v26y2008p536-545.html>.

Examples

```
rkhs <- rkhs_filter(horizon = 6, asymmetricCriterion = "Timeliness")
plot_coef(rkhs)
```
rkhs_kernel *Get RKHS kernel function*

Description

Get RKHS kernel function

```
rkhs_kernel(
 kernel = c("Biweight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
    "Triweight"),
 degree = 2,
 horizon = 6
\mathcal{L}
```
rkhs_optimal_bw 29

Arguments

Description

Function to export the optimal bandwidths used in Reproducing Kernel Hilbert Space (RKHS) filters

Usage

```
rkhs_optimal_bw(
 horizon = 6,
 degree = 2,
 kernel = c("Biweight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
    "Triweight"),
 asymmetricCriterion = c("Timeliness", "FrequencyResponse", "Accuracy", "Smoothness"),
 density = c("uniform", "rw"),
 passband = 2 * pi/12,
 optimal.minBandwidth = horizon,
 optimal.maxBandwidth = 3 * horizon)
```
Arguments

Examples

```
rkhs_optimal_bw(asymmetricCriterion = "Timeliness")
rkhs_optimal_bw(asymmetricCriterion = "Timeliness", optimal.minBandwidth = 6.2)
```
rkhs_optimization_fun *Optimization Function of Reproducing Kernel Hilbert Space (RKHS) Filters*

Description

Export function used to compute the optimal bandwidth of Reproducing Kernel Hilbert Space (RKHS) filters

Usage

```
rkhs_optimization_fun(
 horizon = 6,
 leads = 0,
  degree = 2,
 kernel = c("Biweight", "Henderson", "Epanechnikov", "Triangular", "Uniform",
    "Triweight"),
 asymmetricCriterion = c("Timeliness", "FrequencyResponse", "Accuracy", "Smoothness"),
 density = c("uniform", "rw"),
 passband = 2 * pi/12\mathcal{L}
```
Arguments

Examples

```
plot(rkhs_optimization_fun(horizon = 6, leads = 0,degree = 3, asymmetricCriterion = "Timeliness"),
     5.5, 6*3, ylab = "Timeliness",
    main = "6X0 filter")
plot(rkhs_optimization_fun(horizon = 6, leads = 1,degree = 3, asymmetricCriterion = "Timeliness"),
     5.5, 6*3, ylab = "Timeliness",
     main = "6X1 filter")plot(rkhs_optimization_fun(horizon = 6, leads = 2,degree = 3, asymmetricCriterion = "Timeliness"),
    5.5, 6*3, ylab = "Timeliness",
    main = "6X2 filter")
```
simple_ma 31

```
plot(rkhs_optimization_fun(horizon = 6, leads = 3,degree = 3, asymmetricCriterion = "Timeliness"),
     5.5, 6*3, ylab = "Timeliness",
     main = "6X3 filter")plot(rkhs_optimization_fun(horizon = 6, leads = 4,degree = 3, asymmetricCriterion = "Timeliness"),
    5.5, 6*3, ylab = "Timelines",main = "6X4 filter")
plot(rkhs_optimization_fun(horizon = 6, leads = 5,degree = 3, asymmetricCriterion = "Timeliness"),
    5.5, 6*3, ylab = "Timeliness",
    main = "6X5 filter")
```
simple_ma *Simple Moving Average*

Description

A simple moving average is a moving average whose coefficients are all equal and whose sum is 1

Usage

simple_ma(order, lags = -trunc((order - 1)/2))

Arguments

Examples

```
# The M2X12 moving average is computed as
(simple_ma(12, -6) + simple_ma(12, -5)) / 2
# The M3X3 moving average is computed as
simple_ma(3, -1) ^ 2
# The M3X5 moving average is computed as
simple_ma(3, -1) * simple_ma(5, -2)
```
var_estimator *Variance Estimator*

Description

Variance Estimator

Usage

var_estimator(x, coef, ...)

Details

Let $(\theta_i)_{-p\leq i\leq q}$ be a moving average of length $p+q+1$ used to filter a time series $(y_i)_{1\leq i\leq n}$. It is equivalent to a local regression and the associated error variance σ^2 can be estimated using the normalized residual sum of squares, which can be simplified as:

$$
\hat{\sigma}^2 = \frac{1}{n - (p + q)} \sum_{t = p + 1}^{n - q} \frac{(y_t - \hat{\mu}_t)^2}{1 - 2w_0^2 + \sum_{i = -p}^{q} w_i^2}
$$

References

Loader, Clive. 1999. Local regression and likelihood. New York: Springer-Verlag.

Index

∗ datasets retailsa, [27](#page-26-0) *,ANY,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) *,ANY,moving_average-method *(*filters_operations*)*, [9](#page-8-0) *,finite_filters,ANY-method *(*filters_operations*)*, [9](#page-8-0) *,finite_filters,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) *,finite_filters,moving_average-method *(*filters_operations*)*, [9](#page-8-0) *,finite_filters,numeric-method *(*filters_operations*)*, [9](#page-8-0) *,moving_average,ANY-method *(*filters_operations*)*, [9](#page-8-0) *,moving_average,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) *,moving_average,moving_average-method *(*filters_operations*)*, [9](#page-8-0) *,moving_average,numeric-method *(*filters_operations*)*, [9](#page-8-0) *,numeric,moving_average-method *(*filters_operations*)*, [9](#page-8-0) +,finite_filters,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) +,finite_filters,missing-method *(*filters_operations*)*, [9](#page-8-0) +,finite_filters,moving_average-method *(*filters_operations*)*, [9](#page-8-0) +,moving_average,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) +,moving_average,missing-method *(*filters_operations*)*, [9](#page-8-0) +,moving_average,moving_average-method *(*filters_operations*)*, [9](#page-8-0) +,moving_average,numeric-method *(*filters_operations*)*, [9](#page-8-0) +,numeric,finite_filters-method

*(*filters_operations*)*, [9](#page-8-0) +,numeric,moving_average-method *(*filters_operations*)*, [9](#page-8-0) -,finite_filters,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) -,finite_filters,missing-method *(*filters_operations*)*, [9](#page-8-0) -,finite_filters,moving_average-method *(*filters_operations*)*, [9](#page-8-0) -,finite_filters,numeric-method *(*filters_operations*)*, [9](#page-8-0) -,moving_average,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) -,moving_average,missing-method *(*filters_operations*)*, [9](#page-8-0) -,moving_average,moving_average-method *(*filters_operations*)*, [9](#page-8-0) -,moving_average,numeric-method *(*filters_operations*)*, [9](#page-8-0) -,numeric,finite_filters-method *(*filters_operations*)*, [9](#page-8-0) -,numeric,moving_average-method *(*filters_operations*)*, [9](#page-8-0) /,finite_filters,numeric-method *(*filters_operations*)*, [9](#page-8-0) /,moving_average,numeric-method *(*filters_operations*)*, [9](#page-8-0) [,finite_filters,ANY-method *(*filters_operations*)*, [9](#page-8-0) [,finite_filters,missing-method *(*filters_operations*)*, [9](#page-8-0) [, moving_average, logical-method *(*filters_operations*)*, [9](#page-8-0) [,moving_average,numeric-method *(*filters_operations*)*, [9](#page-8-0) [<-,moving_average,ANY,missing,numeric-method *(*filters_operations*)*, [9](#page-8-0) ^,finite_filters,numeric-method *(*filters_operations*)*, [9](#page-8-0)

34 INDEX

^,moving_average,numeric-method *(*filters_operations*)*, [9](#page-8-0) cbind.moving_average *(*filters_operations*)*, [9](#page-8-0) confint_filter, [2](#page-1-0) cp *(*diagnostics-fit*)*, [5](#page-4-0) cross_validation *(*deprecated-rjd3filters*)*, [4](#page-3-0) cv *(*diagnostics-fit*)*, [5](#page-4-0) cve *(*diagnostics-fit*)*, [5](#page-4-0)

deprecated-rjd3filters, [4](#page-3-0) dfa_filter, [4](#page-3-0) diagnostic_matrix, [7](#page-6-0) diagnostics-fit, [5](#page-4-0)

```
filter, 8, 8, 9
filters_operations, 9
finite_filters, 12
finite_filters(), 3, 9, 19, 21, 28
fst, 13
fst_filter, 14
```
get_kernel, [16](#page-15-0) get_moving_average, [16](#page-15-0) get_properties_function, [17](#page-16-0)

```
implicit_forecast, 17
impute_last_obs, 18
is.finite_filters (finite_filters), 12
is.moving_average (moving_average), 22
is_symmetric (moving_average), 22
```

```
kernel, 16
```

```
length.moving_average (moving_average),
        22
localpolynomials, 19
localpolynomials(), 22
loocve (diagnostics-fit), 5
lower_bound (moving_average), 22
lp_filter, 21
lp_filter(), 20
mirror (moving_average), 22
```
moving_average, [22](#page-21-0) moving_average(), *[3,](#page-2-0) [4](#page-3-0)*, *[6](#page-5-0)*, *[9](#page-8-0)*, *[13](#page-12-0)*, *[32](#page-31-0)* mse, *[7](#page-6-0)*, [24](#page-23-0)

plot_coef *(*plot_filters*)*, [25](#page-24-0)

```
plot_filters, 25
plot_gain (plot_filters), 25
plot_phase (plot_filters), 25
rbind.moving_average
        (filters_operations), 9
retailsa, 27
rev.moving_average (moving_average), 22
rkhs_filter, 27
rkhs_kernel, 28
rkhs_optimal_bw, 29
rkhs_optimization_fun, 30
rt (diagnostics-fit), 5
show,finite_filters-method
        (finite_filters), 12
show,moving_average-method
        (moving_average), 22
simple_ma, 31
sum.moving_average
        (filters_operations), 9
to_seasonal (moving_average), 22
upper_bound (moving_average), 22
var_estimator, 31
```
var_estimator(), *[3](#page-2-0)*, *[6](#page-5-0)*